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A new representation of the electromagnetic field tensor has been found. In this 
representation it is shown that an intimate relationship exists between electro- 
magnetism and spin; the duality rotation of the "already unified theory" is 
shown to coincide with the Touschek-Nishijima transformation of the theory of 
leptons. A nonlinear spinor equation equivalent to Maxwell's equations is 
deduced. 

1. INTRODUCTION 

In this paper a new spinor representation of Maxwell's equations is 
deduced. Spinor representation of Maxwell's equations has already been 
given by several authors (Laporte and Uhlenbeck, 1931; Oppenheimer, 
1931; von Moli~re, 1949; Von Schubert, 1949; Ohmura, 1956; Good, 1957; 
Moses, 1958, 1959). However the present one differs completely from all 
the previous ones. The present representation shows a relationship between 
electromagnetic field and the spin of relativistic quantum mechanics, and 
moreover the duality rotation of Rainich (1925) and Misner and Wheeler 
(1957) is naturally identified with the Touschek (1957) and Nishijima 
(1957) transformation of the theory of leptons. These results indicate the 
possibility of an intimate correspondence between electromagnetism and 
relativistic quantum mechanics. This aspect of the problem will be investi- 
gated in detail in forthcoming papers. It also appears of interest that while 
the present representation of Maxwell's equations quadratically involves a 
spinor, typical of the electromagnetic field, it has been possible to deduce a 
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single equat ion for such a spinor which is nonl inear  and  completely 
equivalent  to Maxwell 's  equations.  

2. A S P I N O R  R E P R E S E N T A T I O N  O F  M A X W E L L ' S  
E Q U A T I O N S  

The tensor form of Maxwell 's  equations is well known.  Once  we 
int roduce the electromagnetic  field tensor F,~ as follows, 

Ft,~= - F . ~ , = A ~ , , . - A ~ , , ,  (2.1) 

Maxwell 's  equations read 2 

F~,~  = j  ~ (2.2) 

* F ~ . ,  = 0 ( 2 . 3 )  

where the covariant  and cont ravar iant  componen ts  are related as follows: 

F~" = n ~ n  ~Fo.  (2.4) 

* F  ~" is the dual of  F ~ defined by 

�9 F m, = ! e u~,,~. 7/ F ~/~ 2 q~a rfl (2.5) 

with e z"~ the Ricci pseudotensor  with entry + 1 if the pari ty of the 
permuta t ion  #par of  the indices 0, 1,2,3 is even, and  - 1  if odd,  and  entry 
zero if two or more  indices are equal, and with ~/~' the Minkowski  metric 
tensor given by 

~ /~=  - 1  0 0 , ( # , v = 0 - 3 )  (2.6) 
0 - 1  
0 0 - 

It is well known  (Messiah, 1966b, p. 908) that  for any  set of  Dirac 
matrices T which obey  the an t i commuta t ion  relations 

3,~,~ + V'~,~'= 2rl w (2.7) 

2Hereafter we shall use the Einstein sum convention under which the sum is understood when 
two indices are repeated, and a comma followed by an index indicates the operation of 
partial derivative with respect to the variable with that index. 
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any spinor ~I' with four complex components is such that the two-indices 
system 

F " =  �89 ~.,/[t~y.']. (2.8) 

transforms as an antisymmetric real tensor of rank 2. 
Here we have indicated by yI~ , l  the following: 

= �9 [ r . , y " ]  = " ( r . y . -  r . r . )  

and by xI, the Dirac conjugate of the spinor ~,  namely, 

(2.9) 

= ~tT~ (2.10) 

where ,t'* is the Hermitian conjugate of the spinor xI,. 
Our objective is to demonstrate that any electromagnetic field tensor 

is susceptible of a representation (2.8). In the sense that for any electro- 
magnetic field tensor F ~" there exists at least a spinor xI" such that equation 
(2.8) holds. In doing this we will use a theorem found by Rainich (1925) 
and revived by Misner and Wheeler (1957). 

This theorem states that at any point of the four-dimensional 
Minkowski space any nonnull electromagnetic field can be reduced to an 
extremal field by a Lorentz transformation and a duality rotation. 

Misner and Wheeler call an extremal field, a field for which the 
magnetic field H is zero and the electric field E is parallel to the x axis. 

While the Lorentz transformation is quite well known, the duality 
rotation is not. It is, however, readily defined as the operation which brings 
any antisymmetric tensor F ~' in a double-index system F w by means of 
the operation 

f f~  = F ~' cos a + * F " sin a (2.11) 

The real parameter a is called by Misner and Wheeler the "complexion" of 
the field F ~" in the given point. Once the proof of the validity of the 
representation (2.8) for any nonnull field F " will be given, then from the 
following identity 

e t,,,,,~-.q~,,,/.q,.,~ ~,[o,,,B ] = 2 y 5yO, y,,] (2.12) 

with 

v 5= v~ (2.13) 
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and hence 

and 

(3 '5 )  2 =  - -  1, (2.14) 

3'5t __.= _ 3'5 

where one  uses the c o m m o n  representat ion of the 3' matrices 

(2.15) 

o o  
3'o__ 1 0 

0 - 1  
0 0 -- 

3'2= 
oo0 il 0 0 i 
0 i 0 ' 

- i  0 0 

1 y =  

3,3= 

~176176 0 0 1 
0 - 1  0 " 

- 1  0 0 

OOl !] 
0 0 0 - 

- 1  0 0 
0 1 0 

(2.16) 

with 

(3'.o)2= 1, (3'k)2 = _ 1 ( k =  1,2,3) (2.17) 

one has 

(2.18) 

On the other  hand  the matrices ( i / 2 ) 7 [ ~  ~] are nothing but  the matrices of 
the matr ix  representat ion of the spin opera tor  S w (Messiah, 1966b, p. 905) 

i 3,[.3'~1 (2.19) S " = ~  

and equivalently one  has 

F ~ = �9 S w �9 (2.20) 

�9 F ~ = ~3,5SW~ (2.21) 

And  Maxwell 's  equat ions (2.2) and (2.3) read 

(~ItSW'I'),~ = j~  (2.22) 

(~3,5S~"I'),~, = 0  (2.23) 
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The energy-momentum tensor T~ is readily calculated in the spinor repre- 
sentation. In fact the familiar definition 

T ~  = F~~ - 1 ~FoOF 

when is written in the representation (2.20) becomes 

which by means of the two identities (A.8) and (A. 10) gives 

(2.24) 

TfT~ = ~6 { (~q~)2 + (~y,~12 }2 (2.25) 

For a null field one therefore has 

T ~ , T ~ = O  (2.26) 

if and only if one has the two equations 

qt'I" = 0 (2.27) 

~,vs~=o (2.28) 

3. LORENTZ TRANSFORMATION 

Let us consider an antisymmetric tensor F w of the form (2.8), i.e., 

The transformation properties of the spinor '~' under a Lorentz transforma- 
tion are deduced by following Messiah (1966b, p. 904) quite thoroughly. 

Since one has the anticommutation relations (Z7), we can write (2.8) 
as follows: 

r w = ixItv ~ "q' (/~ v~v) (3.1) 
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Under a Lorentz transformation ~, F ~ transforms in f f~  according to 

f f~ -  ~ f ~ "  F ~ (3.2) 
- -  a - - T - -  

i.e., from (3.1) 

with 

ffw = i ~  ~,I, ( / ~ p )  (3.3) 

f~  = ao~7 ~ 

But there exists a matrix A such that 

-~=A-17~A 

with the property 

or equivalently 

(3.4) 

(3.5) 

AtT0 = 70A-i (3.7) 

so that equation (3.3), by means of definition (2.10) becomes 

/7~ = i~/,tyo~ ~ ~ fit = i,~tAtyOy ~ ~A, t, = ~,y~y ~ , ,  (3.8) 

where we have put 

q,' = Aq, (3.9) 

and equation (3.9) gives the transformation law for a spinor 'Is when the 
antisymmetric tensor (2.8) undergoes a Lorentz transformation. 

4. THE R A I N I C H - M I S N E R - W H E E L E R  DUALITY 
ROTATION AND THE TOUSCHECK-NISHIJ IMA 

TRANSFORMATION 

The effect of a duality transformation (2.11) on the spinor "-I' when an 
antisymmetric tensor (2.8) undergoes such a transformation is easily de- 
termined. By means of equation (2.18) the duality transformation (2.11) 
applied to the tensor (2.8) gives 

?m, = ~(cos a + ys s i n a ) S ~ ,  (4.1) 

A t = y~ 17~ (3.6) 
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and since equation (2.14) holds, we can write 

e ~ = c o s a  + 3,5 sin~ (4.2) 

which permits one to write equation (4.1) as follows: 

_T ~'~ =-~ erS'~S~"P (4.3) 

It is easily shown that there exists a unitary matrix A such that 

"/~ ~ y  ~ ~ = Aty~ ~y ~A /~ :/:v (4.4) 

Since ,/5 anticommutes with all 7's, i.e., 

"ys'/t' + "r ~'~5 = 0 (4.5) 

by putting 

A = a + b75 (4.6) 

with a and b two complex numbers, we have, for the anti-Hermitianity of 
,/5 given by (2.15), 

A * = a * - b * y  5 (4.7) 

By substituting into (4.4) for the anticommutation relation (4.2) and for the 
properties (2.17) and (4.2) one has 

cos a + V 5 sina = lal = -  Ibl 2 + (a*b + ab*)r 5 

which gives the system 

lal2-1bl2=cos~ 

a* b + ab*=sina  (4.8) 

By assuming a and b complex, the system (45) is a system of two equations 
in four unknowns. However, it is easily shown that it admits a solution 
with a and b real. In fact in this hypothesis, the system (4.8) becomes 

a - b = c o s a  

2ab = sin a 
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which admits the solution 

Ot 
a = C O S ~ -  

Ot 
b = sin ~- 

in correspondence of which equation (4.3) gives 

a 5 " O/ = e r S a / 2  A=cos~-  + ' /  s m ~  (4.9) 

We can therefore conclude that if an antisymmetric tensor in the form 
(2.8) undergoes a duality rotation with complexion a then the correspond- 
ing spinor xt, undergoes a transformation, we call "spinor duality rotation," 
expressed by 

q -+e  Y~/2~t' (4.10) 

The transformation (4.10) was introduced in the theory of leptons by 
Touschek (1957) and in the same time by Nishijima (1957). 

The unitary character of the spinor duality rotation transformation is 
readily seen once the anti-Hermitian character of the matrix 75 is taken 
into consideration, because, in fact, one has, for 

A =  e YSa 

hence the unitary property. 

5. THE ELECTROMAGNETIC FIELD 

The representability of a nonnull electromagnetic field in the spinor 
form (2.8) will be now immediately shown once it will be shown for an 
extremal field. 

In fact, if for the extremal field Fg ~ there exists an extremal spinor xI' o 
such that (2.8) holds, i.e., 

F ~ =  i - -  (5.1) 

then for the Rainich-Misner-Wheeler  theorem and for what we have 
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demonstrated above, we have that any electromagnetic field F "~ with 
complexion a can be written 

_ i ~ ,[~ ,~lq, F " ~ - ~  r , (5.2) 

with 

= e r"~/2A'~ o (5.3) 

In order to demonstrate the existence of a spinor '~'0 such that the 
representation (5.1) for an extremal field is valid, it is convenient to use a 
different representation of the Dirac matrices. 

Since iy 1 and i7~ are two Hermitian, commuting matrices, accord- 
ing to the well-known theorem which states that two commuting Hermitian 
matrices can be simultaneously diagonalized with the aid of the same 
unitary transformation, there will be a unitary matrix U such that both 
Ui71U * and UiT~ ~ are diagonal. 

In the Dirac representation (2.16), both y172 and 707 iy2 are diagonal, 
and so by taking 

1 
U =  (1 - 7 2) (5.4) 

X/2 

which is clearly unitary, i.e., 

u u *  = u * u  = I (5.5) 

one has 

Uy~U t= 3,L~ 2 (5.6) 

v7o7 ~72v, = 7or 1r2 (5.7) 

On the other hand since the new matrices 3, '~ defined by 

7 "~= uT"v* (5.8) 

satisfy the same anticommutation relations (2.7), we can assume, without 
loss of generality, the new representation (5.7) for showing the existence of 
a spinor '~'0, such that (5.1) is satisfied. 
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By indicating ~u ( / z=0-3 )  the components of the spinor '~o in this 
representation, equation (5.1) explicitly reads 

Oo 2 -p l2= Fo 12 + Fo ~ 

1 30 
P0Pl  C O S ( 0 1 -  0 0 ) =  - -  i ( r o  + r g  3) 

: 2= rg '  r gl P2 -- P3 "t- 

I 30 32 o~o~cos(O3- o9  = ~(Fo + F; ) 

OoO~ c o s ( 0 : -  0o) + p~o~ cos(0~-  0,) = Fo ~' 

0o0~ cos(0~ - 0o) - p~p~ cos(0~-  0,) = F ~ 

Here, we have put 

~t'=puei~ 

On the other hand, F~ ~ is the extremal field 

0 
F U =  1 

2 
3 

( ~ = 0 - 3 )  

0 1 2 3 

- E  0 0 
0 0 0 
0 0 0 

and the system (5.9)-(5.14) reads 

pop, cos(0, - 0o) = 0 

o~- d = E 

P2P3 COS(03 - -  02) = 0 

PoP2 COS(02 - -  00) + PlP3 COS(03 - -  01) = 0 

PoP3 COS(03 - -  00) - -  PlP2 COS(02 - -  01) = 0 

(5.9) 

(5.1o) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5A7) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

(5.22) 
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If E > O, we can put 

Po = V E  cosh/3 

Pl  = ~ sinh/3 

P2 = " V ~  c o s h  3' 

03 = V E  sinh 3' 

and the equations (5.17) and 
equations become 

109 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

(5.19) are satisfied while the remaining 

s i n h  2/3 COS(01 --  00) ~-- 0 

sinh 2y cos(03 - 02) = 0 

cosh/3 cosh y cos( 02 - -  00) -b sinh/3 sinh y cos(03 - -  01) ----- 0 

cosh/3 sinh 3' cos(O 3 - 00) - sinh/3 cosh 3' cos( 02 --  01) ~" 0 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

A simple algebraic analysis of this system, which we omit for sake of 
simplicity, leads, within a phase factor, to the following solution: 

I cosh0 ] 
~'0 + = [ i sinh 0 / 

[ eicosh0 / (5.31) 
L e sinh0 J 

Here '~'0+ indicates the spinor solution of equation (5.1) corresponding to 
positive values of the extremal field, E, 0 is an arbitrary real parameter, 
and e can assume values + 1 and - 1. 

The solution ~0 -  of equation (5.1) for negative values of the extremal 
field is readily found, since the transformation 

E - - - )  - E 

po<-~-p 1 

Oz~--P3 (5.32) 

00,,~--~01 

02~<~-03 
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reduces the case E < 0 to the previous one, so that one has 

f isinhO ] 
= /  coshO / 

- / esinh0 { 
ei cosh 0 J 

- sinh 0 
i cosh 0 
ei sinh 0 

- e cosh 0 

v~  (5.33) 

The general solution of (5.1) therefore reads as follows: 

{'0 = �89 + sgnE)~o+ + ( 1 -  s g n E ) ~  o_ (5.34) 

Here sgnx is the step function defined by 

sgnx = { _ + 11 forf~ xX <> 00 (5.35) 

The solution 't' 0 of the system (5.1) in the Dirac representation is im- 
mediately found by inverting the transformation (5.8), and one has 

1 
% = V * * o =  ~ -  (1 - ~,2)k o (5.36) 

The solution (5.36) is susceptible to a simpler representation. First we 
notice that by introducing the angle y defined by 

1 - sgn E 
Y= 4 r (5.37) 

(5.34) reads 

{'o = cos 3"~'o +, + sin Y'~o- (5.38) 
and since one readily has also 

~ o -  --- Y2V3~o+ -- - i~ (5.39) 

equation (5.34) becomes 

'~o =(COS y -  ioxsin'/)~o+ =exp[ iox(sgnE-1) 2 ]q'o+ (5.40) 

which shows that the spinor '~'o is obtained by rotating the spinor q%+ 
about  the axis 0x by an angle ( s g n E -  1)~r/4. 



New Spinor Representation I 111 

The spinor ~0+ also can be written in a simpler way by noticing that 
one has 

cosh0 
i sinh 0 

ei  cosh 0 
e sinh 0 

cosh 0 
0 
0 

e sinh 0 

0 0 e sinh 0 
cosh0 e sinh0 0 
e sinh 0 cosh 0 0 

0 0 cosh 0 

.] (5.41) 

or equivalently, 

cosh0 
sinh 0 

ei  cosh 0 
e sinh 0 

= (cosheO + ./0y1 sinh eO) i] (5.42) 

But one has (Messiah, 1966b, p. 906) 

cosh e0 + "{~ sinh e0 = A X t (  - eO ) = e - o~o (5.43) 

with 

"g= flt~ and ~o= fl (5.44) 

and (5.41) and (5.42) show that the spinor q'0+ is obtained by the spinor 

by a special Lorentz transformation with velocity v = tan_h(-2eO) directed 
along the x axis (Messiah, 1966b, p. 906). The solution (5.36) can therefore 
be written as follows: 

i1 (5.45) 

The existence of a solution of (5.1) for an extremal field we have 
constructed, implies, through equation (5.3), the existence of a solution of 
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(5.2), which then reads as follows: 

~=(f)'/2e:' ' /2A(1--y2)ei'(sg~E-1)'~/2e-'~~ j (5.46) 

We can therefore conclude  that  for any  nonnul l  e lectromagnet ic  field 
F ~' there exists a spinor ' t '  such that  

i - -  

6. T H E  S P I N O R  FOR THE ZERO FIELD 

While to a zero spinor corresponds  a zero field, the reverse is not  true. 
It  is easily seen, for  example, that  the eigenvectors of  7 5 do indeed lead to 
a zero field. In  fact, if q '  is such that 

75q �9 = ei't" (6.1) 

with e = + 1, then 

and one has 

- -  i 

�9 y 5 = - ei'~ (6.2) 

~ysy[~y~l~ = _ ei~7[~,yd,~ (6.3) 

On  the other hand,  since 75 an t icommutes  with the 7's one also has 

,I,757[~7~1,I , = , t '7f~7~175"t �9 (6.4) 

and equat ion (6.1) gives 

~757[t'y"l',t ' = ei~7[t '7"l~ (6.5) 

and its compar ison with equat ion (6.3) leads to 

q'TL"v"ht' = 0 (6.6) 

It is readily seen that  the eigenvectors of 7 5 give the whole set of solutions 
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for the zero field. In fact, the system (5.9)-(5.14) for F~P=0 gives 

Po=Pl 

P2 = P3 

p2 COS(Ol - -  00) = 0 

p~ cos(03 - 02) = 0 (6.7) 

pop2[ c o s ( 0 2  - 01) + c o s ( 0 3  - 81) l --  o 

pop2 [ c o s ( 0 3  - eo)  - c o s ( 0 2  - 8~) ] = o 

which admits, beside the trivial solution, the following nontrivial solutions: 

Ill , ~ ei , 

ei J 

ei~ 

- e i ~ l  

(6.8) 

with ~ and 7/ arbitrary complex parameters and e = __+ 1. For  having the 
zero-field solutions in the Dirac representation one has only to apply to the 
spinors (6.8) the transformation (5.4), which gives the following: 

Ill 1 ' ~ ei i ( e ~ - T l ) [ =  i'r 
' ~ (~+~o) [  ~ 

ei e i ( e ~ -  71) J ei~" 

(6.9) 

where in the third one ~+ eq and e ( - ~ / h a v e  been replaced with e and z. 
And it is readily seen that the solutions (6.9) are all eigenvectors of 3, 5 
corresponding to the eigenvalues ei. 

7. THE SPINOR xp AND T H E  CHARGE CONJUGATION 
OPERATION 

A property of the spinor ,I, which enters in the present spinor 
representation of the electromagnetic field is that it cannot be an eigenstate 
of the charge conjugation operator K c (Messiah, 1966b, p. 916) with 
charge parity + 1, or in other words it cannot be a neutrettor (Corson, 
1955). 
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In order to demonstrate this property we can show it for the extremal 
field and then show that the property continues to hold after a 
Touschek-Nishij ima transformation and a Lorentz transformation. 

For  the extremal field, we can assume, for sake o f  simplicity, that it is 
positive. In this hypothesis, the spinor N reduces to N0+ given by (5.31). 

In the Dirac representation one has, from equation (5.36), 

N o + _  1 ( l _ y 2 ) , ~ , o  + (7 .1 )  
v~ 

and since in the same representation one also has 

N c = 75KN, = y2N*J 

(7.1) gives, by using equation (5.33), 

_~22 ( ^ 1 No+c = 1 + yZ)No+c = V2  

(7.2) 

- - -  (1 - 72)'~'J+ (7 .3 )  

Therefore the condition 

No+ c = No+ (7.4) 

is equivalent to the other 

'~o+ ='~J+ 
which cannot be satisfied since, from equation (5.31), it would require the 
incompatible condition 

cosh0--  sinh0 = 0 

and similarly for N0_. 
For  what concerns the Touschek-Nishij ima transformation it is read- 

ily seen that it commutes with the charge conjugation operator because the 
operator K commutes with 3, ~ then with 75. It is already known that the 
charge conjugation operator commutes with Lorentz transformations and 
so for the general spinor N given by (5.3) one has 

KcN= evs'~/2AKNo 

The spinor N is then a self-charge conjugate if and only if N o itself is such, 
and that is not possible, as has been shown above. 
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8. THE SPINOR EQUATION EQUIVALENT TO MAXWELL'S 
EQUATIONS 

Maxwell's equations (2.22) and (2.23) will be now reduced to a single 
equation for the spinor ~I,. Since one has equation (2.19), by using the 
anticommutation relations (2.7), equations (2.22) and (2.23) read as 
follows: 

becomes 

m p m p 

't',~3, ~,~'I'-'t'3,~3, ,I , ,~=~, , I , -~ , I , ,  -2/ j~ (8.1) 

" ,I, ~ ' ~,i, - ( ~ , S ~ - ~ r , , i , , ~ )  (8.2) 

which by putting 

r " % = ~  (8.3) 

~ y/~t, - ~y~qb = ~ , ~  - ~q, , ,  - 20, (8.4) 

~ v 'rA'  - ~ r , r  5~ = - ( ~ , ,  r'q" - ~ 5 ~ , , , )  (8.5) 

Equations (8.4) and (8.5) can be solved for the spinor �9 by expanding 
into the four independent eigenvectors of the matrix 75 corresponding to 
its eigenvalues ___ i, namely, 

X0 = 0 , Xl = 

with 

By putting 

_ , X 2  = , X3 = (8.6) 

YSX~ = (-- 1) ~+ lix~ (8.7) 

p 

= r x~ (8.8) 

since one has the orthogonality property: 

~x~ =2G (8.9) 

where 24, is the transposed of X~, one has the components of any spinor ep 
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in the representation X, as follows: 

By using the representation 
equations (8.4) and (8.5) read 
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- (8.10) 

(8.8), and by remembering equation (8.7), 

(I)~*X, ~/~ , I  , - (I)~ ,I ,  y ~ X ,  - -  7~ ,u , t ,  - ~ , t , , ,  - 2~]~ 

m p p*-- (-- 1) q X~,y~'~ + ( -  1)~P~y~,X~ = i(~,~3'5~--~5~t ' ,~) 

B y  adding and subtracting the last two equations one has 

-- -- iys+ 1 
(I~~ t - -  ( I ) l ~ ] / t t X l  --I- 1~)2*X2Y/~xt - ( I )3~] t /LX3 = ~It ,#  2 

(8.11) 

(8.12) 

- -  i 7 5 +  1 
�9 I , -  0 

(8.13) 

_ _ _ i y 5  1 ~ i y  5 - 1  _ 
@O'x~"~p.20 - -  (I)l *Xl "[,u, xIt -~ ~2xIt T~X2 -- @323y~qf = xlt't~ 2 xIt -- xg ~ ~lt,t ~ +/j" 

(8.14) 

Since, as is readily seen, equation (8.14) is nothing but the complex 
conjugate of equation (8.13) we have to consider only this latter equation, 
which by putting 

_ _ 1 + i 7  5 
F~ = xI,,~ 1 +2 iy5 ~t, - x t , ~  ~',~ - lj~' (8.15) 

reads 

(I)~ '~ , - (I)1~ y~,~l + (I)2"~2-6,T - (I)3T 7~,X3 = F .  (8.16) 

If B~ are the components of the spinor T in the representation of the X'S, 
namely, 

"I' = ~ ~X. ( 8 . 1 7 )  

i.e., according to equation (8.10). 

(8.18) 
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Straightforward calculation of the coefficients of (8.16) gives the following: 

Xo7o xI' = 2,00, Xa To ~ -- 2,01, X2Yo ~ -- 2,02, X3]t0 xtt = 2,03 

~oy l~  ---- _ 2,02, X~YlXI t = 2,03, X2y1xP = - 2,00, X3Y1 x~t = 2,02 

(8.19) 

X o T 1 2 x I  t = 2 i , 0  2 ,  X1Y2xI t = -- 2i,03, X 2 " ) t 2 x t  t = - -  2i%, X 3 ~ 2 x t  t = 2i,01 

Xo'/3 qz= -2 ,0  o, XlY3@ =2,01, 

the system (8.16) explicitly reads 

X2Y3xI t = 2,q2 , X3~3xI t = _ 2,0 3 

2 - ,02 - ,0~ - ,0o _,0~ q~l 
i ,0  2 - -  ,0~ -- i,0 o i,0~ ] (I)2. 

- ,0o - ,0r  ,0. 

Fo] 
= F1 

F2 
17 3 

(8.20) 

The  latter system can be simplified by multiplying it on the left by the 
matrix A given by 

1 A=~ 1 o o i1 --1 0 0 - 1  
0 --1 i 
0 --1 - i  

(8.21) 

and it reduces to 

with 

A K = A F  

q51 

[ % [Fo] 
F1 

F =  i. 2 

F3 

(8.22) 

(8.23) 
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and 

A =  

% 0 0 - ~ ' ]  

0 n~' -n2  o[ 
0 n~' no 
~ o o ~tJ 

(8.24) 

It is readily seen that the matrix A is nonsingular. In fact, 

detA = (non~" + n2"031') 2 (8.25) 

and by using equation (8.18) one straightforwardly has 

~/oBt + v/2B~" = �88 + i~Y 5xIt) (8.26) 

So detA would be zero if and only if ~oxt'=0 and ~ ,sxI ,=0,  which are the 
conditions (2.27) and (2.28) for the null field. We are in the hypothesis of a 
nonnull field. A - l  does, therefore, exist and it is immediately found to be 

A -!~-- 

and (8.22) gives 

~t o o n~' 
0 % ~/2 0 

0 - ~ '  nl 0 

- ~/2 0 0 % 

(8.27) 

K = A  -~AF (8.28) 

By taking in account the contravariant representation of (8.19) equation 
(8.28) explicitly reads 

K =  

~~ ~71X!  ~2X1 ~3X1 ] 
--xoyOx~ --xoylxIt --Xoy2XIf --~(0y3xIt ] F 
~yOx3 ~T1X3 ~y2X3 ~y3X3 

--X2Y~ tf --X2~lxI I --X2~2~t f --X2~3xI f 

(8.29) 

On the other hand the vector (8.15) can be written 

F~ = R~ + I~, (8.30) 
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with 

and 

R. = � 8 9  ~i75~I',.)= - Im(~,~T'~I  ') (8.31) 

I~= �89  (8.32) 

where Im is the imaginary part, and for (8.23) the system (8.29) reads 

1 
~o '=  8(7/o~* + ~2B~') [ 2,(7"R~ - y~/~)'t' ]* (8.33) 

- 1  
(hi = [ 20(7 "R, + r ~/~)'~' ] (8.34) 

8(~on~ + ,2~r 

d#2. = 1 
8(~o~t + ,72~) [ 2 , ( r % -  v %),I, ]* (8.35) 

- 1  
,3  = [ 22(7"R, + y ~/~)q' ] (8.36) 

On the other hand since one clearly has 

21 = 2 0 '  2 0  ~- 2 1 '  23  = 2 2 '  2 2  ~- 2 3  (8.37) 

and (8.7) holds, the system (8.33)-(8.36) becomes 

1 -  t* �9 5 4(~o7/~' + ~72~1~') *r176 = - 7XoY (ty R, + I , ) ~  (8.38) 

1~ /L �9 5 4(~/0~ +r/2"q]) ~1= --2XlY (ty R,+I~,)'ff '  (8.39) 

1-  p. " 5 4(r/o~/~ + ~/23,~7 *'~.d92-- - 5X27 (iV R~. + I,)~I' (8.40) 

4(noV~' ~ * 3 +I,),I, (8.41) + 2v/3)cP = -- �89 

By using (8.26) it can be easily shown that the left sides of the system 
(8.38)-(8.41) are nothing but the X components of the spinor Cq~ with the 
matrix C given by 

C = ~I"t' + ysT75't ' (8.42) 

and one has 

r - C-ly~'(i75R~, + I ~ ) ~  (8.43) 
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The matrix C -  1 is readily calculated to be the following: 

C -- 1 = ~ x I F  - -  7 5 ~ 7 5 ~  

+ 

(8.44) 

Equations (8.31), (8.32) and (8.44) permit one to write explicitly the spinor 
r given by (8.43) as follows: 

~p= - iy~ 
~q,  + 75~y5~ 

+ 
{ I m ( ~ , ~ ' t ' ) -  ys Im(gz,~y'~I') - j~  )'t" 

(8.45) 

It is just enough to remember equation (8.3) for obtaining the spinor 
equation equivalent to the system of Maxwell's equations, i.e., 

y ~ ~t',~ = -- iT ~ (Im(T~,u~) - 3's Im(~,.75xI') - j .  ) ~/' 

(8.46) 

By introducing the angle a defined by 

- cos a (8.47) 

~ 75~I" = sin a (8.48) 

and by recalling equation (3.8), equation (8.46) can be written as follows: 

y ~ , ~  = - -  i7~' 
e y5~ 

[ (~q,)2 + (TZy,~)2] 1/2 (Im(~'"qO - ySIm(~'"Y'~)-J" }'t~ 

(8.49) 

This angle a enters therefore in the spinor Maxwell equation through a 
duality rotation. The meaning of this angle will appear clearly in the next 
section. 
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9. THE MEANING OF THE ANGLE a 

It will be now shown that the angle a we have just encountered in the 
spinor Maxwell equation of the previous section is nothing but the com- 
plexion of the electromagnetic field. 

From equation (8.47) and (8.48) one has 

~ysxt, 
t ana  = ~ _  (9.1) 

't"I' 

which gives 

t a n 2 a =  2 t ana  _ (T~')(~q'sq~) (9.2) 
1 - tan2a l / 2 ( ( ~ , ) z -  ( ~ y s ~ )  2 } 

By using the identities (A. 10) and (A. 11) together with equations (2.20) and 
(2.21), (9.2) reads 

tan2a  = Fw*F~ (9.3) 
F~.F ~ 

which coincides with the Misner-Wheeler equation (2.24) (Misner and 
Wheeler, 1957), when the angle a coincides with the complexion of the 
electromagnetic field F~. 

10. CONCLUSIONS 

In the previous pages, it has been shown that for any given electro- 
magnetic field its electromagnetic field tensor F ~' can be written as 
follows: 

F ~ -- �9 S w xI' (2.20) 

where xt, is a spinor, xt' its Dirac conjugate, and S ~' the spin operator given 
by 

S .  ~ i (2.19) 

the 3"s being the Dirac matrices. In this representation Maxwell's equa- 
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tions read as follows: 

(~S  u*'t'),,, = j "  (2.22) 

(~ySSV~),~ =0  (2.23) 

It has been shown, moreover, that the Rainich-Misner-Wheeler duality 
rotation of the "already unified theory" is nothing but  the 
Touschek-Nishijima transformation of the theory of leptons. The two 
equations (2.22) and (2.23), quadratic in xI', have been reduced to a single 
nonlinear equation for xI" which is the following: 

y ~'~,~ = -- i7~ 
e ),5~ 

[r (~xI') 2 + ( ) J - ~ Y  sxI'-: 7 '/2 ( Im(~ , ,  ~I')- 7s Im(~,~ysxI " ) - J r  } xI' 

(8.49) 

and the parameter a has been identified with the "complexions" of the 
electromagnetic field. The present paper is the first of a series in which the 
properties of the spinor representation of Maxwell's equations are explored 
and their implications with relativistic quantum mechanics analyzed in 
detail. 

A P P E N D I X  A: P R O O F  O F  S O M E  I D E N T I T I E S  U S E D  I N  T H E  
TEXT 

In this Appendix are deduced some identities which are used in the 
text. The first one is the following: 

(~ ~''xI')(~2r q') = (~xI")2 + (~3,,xi,)2 (A.1) 

for any two spinors (I) and ,t,. Its demonstration is, however, omitted since 
it is only a tedious exercise. In particular for qb = "t" one has 

( ~ y " V ) ( ~ y . V )  = (~V) 2 + (~ysV):  (A.2) 

In what follows is used the following important identity: 

(~  1 ~ P'X~r (~2~p xlt ) ----- (~  1XIr (~2Xlt) + (~  1 ~/5 Xlt ) (~2"y 51LI t ) (A.3) 
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for any three spinors (I)l, (I)2, and '/', and which generalizes the identity 
(A.1). In fact, by putting 

= d91 + qb 2 (A.4) 

the identity (A.I) gives 

=(517 b~It)(~l 7/.t ~It) "1- (~27 P'~x't) (~2'/t ~I/) -[- 2(~17/x ~It) (~27/,~I/) 

(A.5) 

It is just enough to use the identify (A.1) on the left side of (A.5) as well as 
on the first and second terms of the right side for having the identity (A.3). 
In particular, by taking in (A.3) 

qb 2 = 75691 = rsq ~ (A.6) 

(A.3) gives 

(~7"~)(U~757.*) = 0 (A.7) 

Another important identity is the following: 

(A.8) 

which is immediately deduced from (A.3) by remembering (5.7) and the 
anticommutation relations (4.5) and by writing (A.3) with the positions 

~1 = 7 ~xI" and q52 = 7o~ (A.9) 

From (A.8) and (A.2) one has 

(~S"~ xt')(~S.~ qO = �89 { (~q~)2- (~75xt') 2 } (A.10) 

Similarly one has the other identity 

= ,) (A.1 I) 



Also the following identity holds: 

(~7~'*)(~S~,*) = 2 (~7 '*) (~TsT,*)  (A.12) 

whose validity is easily shown by adopting the techniques used for the 
other identities. Another important identity is the following: 

2iIm{ (~,~*)(T/~/sq') - (~,~TS*)(T/*)) = (~7"#),~(~7/75"I0 

(A.13) 

whose demonstration is straightforward. In fact, the identity (A.3) with the 
positions 

~l =*,~ (g.14) 

(I~ 2 = 7 5 x i  t (A. 15) 

gives 

(~,~Tt'.)(~y57~,*) = (~,,,,J/)(~/75xlO- ( ~ , ~ 7 5 ~ ) ( ~ * ) ( A . 1 6 )  

so that 

2i Im{ (~,~q)(T/75*) - (T/,~75~)(TI*)) 

= { (~, ,7 ~*)+  (~7~xI ' ,~))(~7~y5*)(A.I7)  

which is the identity (A.13). Moreover since one has the identity (A.7), 
(A.13) is equivalent to the other: 

2i Im ( (~,,, * ) (~  7sxI ') - (~P,,, 75* ) ( ~ *  ) ) = - (~/7 t , . ) (  ~ 7~, 7 ' *  ),,, 

(A.18) 
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APPENDIX B: P R O O F  OF N O N E X I S T E N C E  OF A S P I N O R  ~I' 
SUCH THAT ff'-#~ =fl" F O R  ANY GIVEN VECTORj ~' 

For any given vector j ,  (/~=0-3), suppose there exists a spinor with 
components ~" such that one has 

~y t ,~  =jr, (B.1) 

It is easily shown that the system (B. 1) is in general incompatible. By using 
the representation (4.7) for the matrices 3', the system (B. 1) explicitly reads 

~r + ~:~'4, + ~'~2 + ~ 3  --J0 

4~'~o + ~J, + 4~3 + ~J43 =Jl 

(B.2) 

4 *r -- '~3 '~ 1~*~ + 4~42 --  4~43 = J 3  

or equivalently 

A*q'=S (B.3) 

with 

[ ~o ~1 ~2 431 4s 42 41 4o 

42 -43 4o -~, 
(B.4) 

and 

J =  J~ 1 Ji 
- /J2 

J3 J 

(B.5) 

The incompatibility of the system (B.2) is readily shown since a straight- 
forward evaluation of detA gives 

detA =0 (B.6) 

for any arbitrary spinor 'Is. 
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